Compressed Sensing Using Adaptive Wavelet Transform and Overcomplete Dictionary
نویسندگان
چکیده
In this paper, we present a new compressed sensing implementation process for one dimension signal reconstruction. Firstly, one level wavelet decomposition of the one dimensional signal was finished. For using the adaptive wavelet transform based on lifting wavelet transforms, we can achieve the detail signals being zero (or almost zero) at big probability, so the signal has the better linear approximation. Secondly, the signal can be reconstructed using compressed sensing method. Because the length of the low frequency coefficients is half of the original signal length, the measurement matrix can be reduced. The redundancy of overcomplete dictionary can make it effectively capture the characteristics of the signals. The overcomplete dictionary which combined the DCT base with the unit matrix can be used for the compressed sensing. Thirdly, using the inverse adaptive wavelet transform, the signal can be reconstructed with the low frequency coefficients. Finally experimental results demonstrate the application effectiveness for this scheme in compressed sensing fields.
منابع مشابه
ECG Signal Reconstruction from Undersampled Measurement Using A Trained Overcomplete Dictionary
We propose a new approach to reconstructing ECG signal from undersampled data based on constructing a combined overcomplete dictionary. The dictionary is obtained by combining the trained dictionary by K-SVD dictionary learning algorithm with universal types of dictionary such as DCT or wavelet basis. Using the trained overcomplete dictionary, the proposed method can find sparse approximation b...
متن کاملCompressed sensing MRI with combined sparsifying transforms and smoothed l0 norm minimization
Undersampling the k-space is an efficient way to speed up the magnetic resonance imaging (MRI). Recently emerged compressed sensing MRI shows promising results. However, most of them only enforce the sparsity of images in single transform, e.g. total variation, wavelet, etc. In this paper, based on the principle of basis pursuit, we propose a new framework to combine sparsifying transforms in c...
متن کاملCompressed Sensing to Power Quality Signal with Orthogonal Matching Pursuit Method
Compressed sensing is a new data compression method which can recover a sparse or compressible signal from a small number of linear and non-adaptive measurements. To solve the problems of high sampling rate and massive data storage faced by traditional collection and compression methods of power quality, compressed sensing algorithm is used in the paper. Gaussian random measurement matrix is us...
متن کاملAdaptive Sampling Rate Assignment for Block Compressed Sensing of Images Using Wavelet Transform
Compressed sensing theory breaks through the limit that two times the bandwidth of the signal sampling rate in Nyquist theorem, providing a guideline for new methods for image acquisition and compression. For still images, block compressed sensing (BCS) has been designed to reduce the size of sensing matrix and the complexity of sampling and reconstruction. However, BCS algorithm assigns the sa...
متن کاملSpeech Signal Compressed Sensing Based on K- Svd Adaptive Dictionary
This paper proposes a novel and successful method for speech signal compressed sensing based on KSingular Value Decomposition (K-SVD) algorithm. K-SVD is an iterative method that alternates between sparse representation of the train samples based on the current dictionary and a process of updating the dictionary atoms to better fit the speech data. The presented K-SVD algorithm is applied here ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013